### Efficient Framework for Partitioning Positive Hypergraph into Dense Subgraph

#### Abstract

#### Full Text:

PDF#### References

Akanksha J. Kulkarni, Swati A. Bhavsar, ”A Survey on Hypergraph

Partitioning Techniques,” International Journal of Trend in Research and

Development (IJTRD), ISSN: 2394-9333, Volume-4 — Issue-1 , February

B. Kernighan and S. Lin, ”An efficient heuristic procedure for partitioning

graphs,” Bell Syst. Tech. J., vol. 49, pp. 291-307, 1970.

D.-H. Huang and A. B. Kahng, ”When clusters meet partitions: New

density-based methods for circuit decomposition,” in Proc. Eur. Conf.

Des. Test,1995, pp. 60-64.

I. Dhillon, Y. Guan, and B. Kulis, ”Kernel k-means: spectral clustering

and normalized cuts,” in Proc. ACM Int. Conf. Knowl. Discov. Data Min.,

, pp. 551-556.

P. F. Felzenszwalb and D. P. Huttenlocher, ”Efficient graph-based Image

segmentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167-181, 2004

J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schn, ”Globally

optimal image partitioning by multicuts,” in Proc. Energy Minim.

Methods Comput. Vis. Pattern Recognit., 2011, pp. 31-44.

C. Fiduccia and R. Mattheyses, ”A linear-time heuristic for improving

network partitions,” in Proc. 19th Conf. Des. Autom., 1982, pp. 175-181.

G. Karypis and V. Kumar, ”A fast and high quality multilevel scheme for

partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp.

-392, 1998.

N. Bansal, A. Blum, and S. Chawla, ”Correlation clustering,” Mach.

Learn., no. 1-3, vol. 56, pp. 89-113, 2004.

S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo, ”Higher-order correlation

clustering for image segmentation,” in Proc. Adv. Neural Inf. Process.

Syst.,2011, pp. 1530-1538.

http://glaros.dtc.umn.edu/gkhome/views/metis/index.html

http://www.labri.u-bordeaux.fr/perso/pelegrin/scotch/

http://staffweb.cms.gre.ac.uk/ c.walshaw/jostle/

### Refbacks

- There are currently no refbacks.

Copyright © IJETT, International Journal on Emerging Trends in Technology